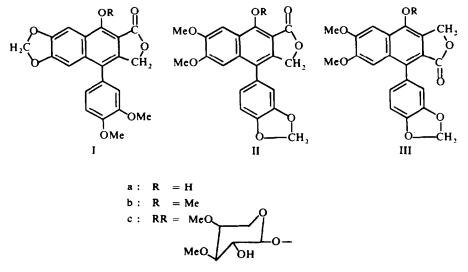
CHEMICAL CONSTITUENTS OF CLEISTANTHUS COLLINUS (ROXB.)*

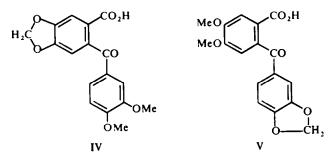
T. R. GOVINDACHARI, S. S. SATHE and N. VISWANATHAN CIBA Research Centre, Bombay 63, India

and

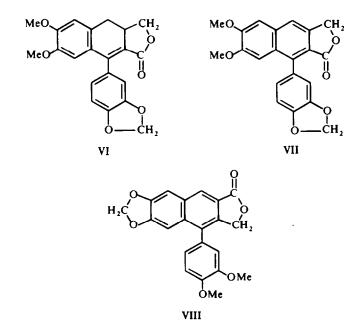

B. R. PAI and M. SRINIVASAN Presidency College, Madras 5, India

(Received in the UK 21 January 1969; Accepted for publication 12 February 1969)

Abstract—Ellagic acid, diphyllin (IIIa) and two new lignan lactones, cleistanthin and collinusin, have been isolated from *Cleistanthus collinus* (Roxb.). Cleistanthin and collinusin have been shown to have structures IIIc and VI respectively.


Cleistanthus collinus (Roxb.) Benth. & Hook f. (Family: Euphorbiaceae) is a highly poisonous plant.¹ From its leaves we have isolated ellagic acid, diphyllin² and two new lignan lactones, cleistanthin and collinusin. Part of this work dealing with the structures of diphyllin and collinusin have been published in the form of preliminary communications.^{3,4} We wish to record here details of this work and also present evidence leading to the structure of cleistanthin.

Diphyllin, isolated from the roots of *Diphylleia grayi*, was assigned structure Ia by Murakami and Matsushima. Justicidin A,⁵ isolated from *Justicia hayatai* var. *decumbens*, was found to be identical with the methyl ether of diphyllin and hence assigned structure Ib.



* Contribution No. 151 from CIBA Research Centre.

Since mild oxidation of diphyllin gave the keto-acid V and not IV, the orientation of the alkoxyl groups had to be interchanged. Of the two possible structures (IIa and IIIa) for diphyllin, the former was preferred because of the strong H-bonding in diphyllin $(v_{\max}^{Nu} \ 1710 \text{ cm}^{-1}, \text{ compared with } v_{\max}^{Nu} \ 1755 \text{ cm}^{-1}$ in its methyl ether). Both compounds (IIa and IIIa) were synthesized by Horii *et al.*⁶ and diphyllin was found to be identical with IIIa. It has been observed⁷ that 4-hydroxyphthalides are strongly bonded intermolecularly in the solid state. In dilute dioxan solution, as expected, diphyllin has v_{\max} 1770 cm⁻¹ whereas O-methyldiphyllin has v_{\max} 1773 cm⁻¹.

Evidence leading to structure VI for collinusin has been presented earlier⁴ and only the experimental details are recorded here. Dehydrocollinusin (VII) obtained by dehydrogenation of collinusin has physical properties very close to those reported for justicidin B.⁵ The two are almost certainly identical although a direct comparison has not so far been possible due to nonavailability of justicidin B. Munakata *et al.*⁵ had first suggested structure VIII for justicidin B but revised it to VII after synthesis of both the structures.⁸

The major constituent of the leaves of *Cleistanthus collinus* is a highly toxic glycoside, named cleistanthin, not reported previously. Cleistanthin, m.p. 135-136°, analyses for $C_{28}H_{28}O_{11}$ · H_2O and has λ_{max}^{EtOH} 262, 294, 315 and 335 mµ (log ε 4.80, 3.99, 4.01 and 3.68), ν_{max}^{Nu} 3600 (OH), 1760 (y-lactone), 1615 (aromatic) and 925 cm⁻¹ (methylenedioxy group). Its NMR spectrum shows the presence of five aromatic protons & 6.85-7.95 ppm), a methylenedioxy group & 6.06), a methylene & 5.45) assigned to the group --C-O--CH₂-- and four methoxyls & 3.5, 3.7, 3.8 and 4.05). A doublet at & 4.98 (J = 6 c/s) is assigned to the proton on the anomeric C atom of the sugar moiety. The presence of a OH group in cleistanthin is shown by the formation of an acetate, m.p. 138-140°, $C_{30}H_{30}O_{12}$ (mol wt by mass spectrum 582), a tosylate, m.p. 209-211° (d) and a methyl ether, m.p. 196-198°.

Methanolysis of cleistanthin with methanolic hydrogen chloride gave diphyllin (IIIa) and a methyl glycoside, $[\alpha]_D + 78.93^\circ$, $C_8H_{16}O_5$ (mol wt by mass spectrum 192). Hydrolysis of the methyl glycoside with dilute acid gave the free sugar, $C_{17}H_{14}O_5$, $[\alpha]_D + 10.36^\circ$, which gave positive Fehling's and periodic acid tests. Oxidation of the sugar with aqueous bromine gave 3, 4-di-O-methyl D-xylono δ -lactone⁹, m.p. 67°, identical in all respects with an authentic sample. The sugar component of cleistanthin is hence 3, 4-di-O-methyl D-xylose and cleistanthin has structure IIIc.

EXPERIMENTAL

M.ps. are uncorrected. IR spectra were taken on a Perkin-Elmer model 421 instrument and UV spectra on a Beckmann DK spectrophotometer. Optical rotations were taken in 2-3% soln in CHCl₃ at 25°. NMR spectra, unless otherwise stated, were recorded on a Varian A-60 instrument in CDCl₃. Chemical shifts are expressed as parts per million (ppm).

Isolation. The dried, powdered leaves (7 kg) of Cleistanthus collinus Roxb., collected at Vizagapatam, were extracted first with cold hexane. The hexane extract on evaporation gave a greenish residue from which on trituration with acetone, was obtained a white solid (50 g), m.p. 78°. (Found: C, 82·2; H, 14·3. $C_{30}H_{62}O$ requires: C, 82·1; H, 14·2%). The mass spectrum of the solid showed the molecular ion peak at m/e 438. The compound, a fatty alcohol, was not investigated further.

Extraction of the defatted plant material with cold acetone gave a semi-solid mass (360 g) which was extracted with hot benzene. The benzene-insoluble material on trituration with acetone gave a brownish solid which crystallized from MeOH to yield ellagic acid (10 g), m.p. 306° , identical with an authentic sample (Found: C, 55-2; H, 2-3. Calc. for $C_{14}H_6O_8:C, 55-6;$ H, 2-0%).

The benzene extract was concentrated and chromatographed over neutral alumina (1.2 kg). 200 ml. fractions were collected. The fractions were examined by TLC and like fractions combined. Elution with benzene gave only oils and a fatty alcohol, m.p. 80°. Subsequent elution with benzene-EtOAc (4:1) gave collinusin (1.2 g) purified by rechromatography over silica gel in benzene-CHCl₃ (4:1). Collinusin crystallized from acetone as needles, m.p. 196°, $|\alpha|_D + 132 \cdot 5^\circ$, $\lambda_{max}^{EoPH} 247$ and 347 mµ (log ε 4·19, 4·02), $\nu_{max}^{KBT} 1750$ (y-lactone), 1650, 1615 (aromatic) and 925 cm⁻¹ (methylenedioxy group). NMR (CDCl₃, 100 mc): δ 3·62, 3·86 ppm (3H each, 2 methoxyls), 5·94 (2H, methylenedioxy), 6·50-6·87 (5H, aromatic protons). (Found: C, 68·6; H, 5·0; OMe, 17·2. C₂₁H₁₈O₆ requires. C, 68·8; H, 5·0; 2 OMe, 16·9%).

Elution of the alumina column with benzene-EtOAc (1:1) give cleistanthin (11 g), m.p. 135-136°, $|\alpha|_{D}$ -67.2°. (Found: C, 60.2, 60.4; H, 5.6,5.4; OMe, 21.2, 20.8. C₂₈H₂₈O₁₁ · H₂O requires: C, 60.2; H, 5.4; 4 OMe, 22.2%).

Further elution of the column with CHCl₃-MeOH (4:1) give diphyllin (3 g), needles (from MeOH), m.p. 291° (d), λ_{max}^{EEOH} 230, 268, 294, 312, 325 and 360 mµ (log ε 4.23, 4.60, 3.81, 3.78, 3.77 and 3.54), ν_{max}^{Ne} 3280 (OH), 1710 (y-lactone), 1610 (aromatic) and 920 cm⁻¹ (methylenedioxy group). (Found: C, 65.9; H, 4.3; OMe, 16.5. Calc. for C₂₁H₁₆O₇: C, 66.3; H, 4.2; 2 OMe, 16.3%).

The MeOH extract of the plant, on concentration, yielded more ellagic acid (12 g).

O-Acetyldiphyllin. Diphyllin (0.5 g) was heated at $60-70^{\circ}$ for 3 hr with Ac₂O (2 ml) and pyridine (1 ml) and worked up as usual to yield the acetate (0.35 g), needles (from benzene-hexane), m.p. 234-235° (d),

 $\lambda_{\text{max}}^{\text{EIOH}}$ 260, 290 (sh), 315 (sh) and 352 mµ (log ε 4.74, 4.04, 3.80), $\nu_{\text{max}}^{\text{Max}}$ 1770, 1635, 1625, 1605, 1225 (broad), 930 cm⁻¹, (Found: C, 65.2; H, 3.9. Calc. for C₂₁H₁₈O₈: C, 65.4; H, 4.3%).

O-Methyldiphyllin. A mixture of diphyllin (0.5 g), anhyd K_2CO_3 (2.5 g), Me_2SO_4 (0.6 ml) and acetone (60 ml) was refluxed for 5 hr and filtered. The residue obtained on evaporation crystallized from CH_2Cl_2 -ether as needles (0.4 g), m.p. 263° (d), v_{max}^{ssc} 1750, 1690, 925 cm⁻¹. NMR (CDCl₃)b 3.81, 4.08, 4.13 (3H each, 3 methoxyls), 5.52 (2H, methylene of lactone ring), 6.06 (2H, methylenedioxy group) and 6.73–7.58 (5H, aromatic protons). (Found: C, 67-1; H, 4.7; OMe, 24.0. Calc. for $C_{22}H_{18}O_7$: C, 67-0; H, 4.6; 3OMe, 23.6%). The compound was identical with an authentic sample of justicidin A (mixed m.p., TLC and IR spectra).

O-Ethyldiphyllin. A mixture of diphyllin (0.2 g), K_2CO_3 (2 g), Et_2SO_4 (1 ml) and acetone (100 ml) was refluxed for 6 hr and worked up as above to yield the O-ethyl ether, needles (from EtOAc-acetone), m.p. 204-205°. (Found: C, 67.7; H, 4.7. $C_{23}H_{20}O_7$ requires; C, 67.6; H, 4.9%).

Diphyllin tosylate. Diphyllin (0-8 g) was heated with p-toluenesulphonyl chloride (1 g) and pyridine (3 ml) at 90° for 4 hr, left overnight at 30° and poured on water. The solid crystallized from CHCl₃-MeOH to yield the *tosylate* (0-6 g), prisms, m.p. 210-211° (d). (Found: C, 62-6; H, 4-2. C₂₈H₂₂O₉S requires: C, 62-9; H, 4-2%). Desulphurization of the tosylate by refluxing it in EtOH with Raney Ni catalyst gave only diphyllin.

Mild oxidation of diphyllin. To a stirred boiling soln of diphyllin (3 g) in acetone (150 ml) was added KMnO₄ (9 g) during 1 hr. The mixture was refluxed for 1 hr more and the solvent evaporated. The residual solid was suspended in water and SO₂ passed into it till all the MnO₂ disappeared. The yellow solid obtained was filtered, washed with water and digested with 2% KOH aq. The alkaline soln was filtered, acidified and extracted with CHCl₃ to yield an amorphous solid (0.7 g). This was dissolved in MeOH (10 ml) and treated with excess ethereal diazomethane. The product crystallized from acetone as needles (0.25 g), m.p. 175°, undepressed on admixture with a synthetic sample of methyl 3, 4-dimethoxy-6-(3, 4,-methylenedioxybenzoyl) benzoate (see below), v_{max}^{KBF} 1705, 1655, 920 cm⁻¹ (Found: C, 63.1; H, 4.7. C₁₈H₁₆O₇ requires: C, 62.8; H, 4.7%). The UV, IR and NMR spectra of the two samples were identical.

Vigorous oxidation of diphyllin. A soln of diphyllin (0.4 g) in KOH aq (2 g KOH in 20 ml water) was treated, with stirring, at 120°, with KMnO₄ aq (1.8 g KMnO₄ in 25 ml water). After heating for 3 hr, the soln was cooled, acidified with dil H₂SO₄, saturated with SO₂ and evaporated to dryness *in vacuo*. The residue was continuously extracted with CHCl₃ and the product chromatographed over silica. Elution with CHCl₃ gave, in one of the fractions, piperonylic acid (30 mg), m.p. 213° (from MeOH), undepressed on admixture with an authentic sample. (Found: C, 57.9; H, 3.6. Calc. for C₈H₆O₄: C, 57.8; H, 3.6%). The IR spectra of the two samples were also identical.

Mild oxidation of collinusin. Collinusin (1.3 g) in acetone (100 ml) was refluxed for 2 hr with KMnO₄ (6 g) and worked up as in the case of diphyllin. The acidic product was esterified with diazomethane to yield a ketoester (0.12 g), m.p. $173-174^{\circ}$, indentical in all respects (TLC, IR, NMR, m.m.p.) with the ketoester obtained from diphyllin.

Vigorous oxidation of collinusin. Aqueous NaOBr was prepared by adding Br_2 (4.8 g) to a soln of NaOH (3.3 g) in water (28 ml) cooled to -5° , during 15 min. Collinusin (0.6 g) in MeOH (15 ml) was refluxed for $\frac{1}{2}$ hr with KOH (0.3 g). The soln was evaporated to dryness *in vacuo* and treated with the hypobromite soln (15 ml). The soln was heated on a steam-bath for 20 min, acidified and treated with NaHSO₃. Extraction with CHCl₃ followed by chromatography of the product over silica in CHCl₃ gave piperonylic acid (50 mg), identical in all respects with an authentic sample. (Found: C, 57.8; H, 3.9. Calc. for C₂H₆O₄: C, 57.8; H, 3.6%).

Dehydrogenation of collinusin. An intimate mixture of collinusin (0.3 g) and Pd-C (10%; 0.3 g) was heated at 180° for 30 min, cooled and extracted with CHCl₃ to yield dehydrocollinusin (0.2 g), m.p. 235-236° (from acetone-ether), $\lambda_{max}^{CHCl_3}$ 261, 296, 312 and 352 mµ (log ε 4.78, 4.03, 4.03 and 3.74), ν_{max}^{KBr} 1762 (γ -lactone), 1618 (aromatic) and 930 cm⁻¹ (methylenedioxy group), NMR (CDCl₃): δ 3.84, 4.07 (3H each, 2 methoxyls), 6.12 (methylenedioxy), 6.90-7.75 (6H, aromatic protons) and 5.40 (2H, methylene of the lactone ring). (Found: C, 69.1 H, 4.7. C₂₁H₁₆O₆ requires: C, 69.2; H, 4.4%).

Acetylcleistanthin. Cleistanthin (0.5 g) was heated with Ac₂O (2 ml) and pyridine (1 ml) at 90° for 3 hr. The product, worked up as usual, was chromatographed over silica and eluted with benzene-MeOH (19:1) to yield the acetate, m.p. 138-140° (from ether-hexane), $[\alpha]_D$ -46.3°. (Found: C, 61.9; H, 5.4. $C_{30}H_{30}O_{12}$ requires: C, 61.9; H, 5.2%).

Cliestanthin tosylate. Cleistanthin (0.5 g) was heated with p-toluenesulphonyl chloride (1 g) and pyridine (1 m) at 100° for 4 hr and the product worked up as usual to yield the tosylate, m.p. $209-211^{\circ}$

(d) (from EtOH), $[\alpha]_D + 15 \cdot 2^\circ$, $v_{\text{MBr}}^{\text{MBr}}$ 1775, 1620, 1598, 1345, 1175 and 930 cm⁻¹ (Found: C, 60.9; H, 5.1. C₃₃H₁₄O₁₃S requires: C, 60.5; 4.9%).

O-Methylcleistanthin. A soln of cleistanthin (0.6 g) in DMF (5 ml) was refluxed for 3 hr with Ag₂O (1.5 g) and MeI (5 ml). More MeI was added and the soln refluxed for 2 hr more. The soln was filtered, the filtrate diluted with water and extracted with CHCl₃. Chromatography of the product over silica and elution with benzene-CH₂Cl₂ (1:1) gave the *methyl ether* (0.3 g) needles (from MeOH), m.p. 196-198°, v_{max}^{Nu} 1765, 1630, 1610, 930 cm⁻¹. (Found: C, 63.0; H, 5.3. C₂₉H₃₀O₁₁ requires: C, 62.8; H, 5.5%).

Methanolysis of cleistanthin. A soln of cleistanthin (10 g) in CH_2Cl_2 (50 ml) was treated with methanolic HCl (7%; 300 ml) and left at 30° for 24 hr. The soln was concentrated to about 150 ml and cooled. The solid that separated was filtered and crystallized from MeOH to yield diphyllin (6.8 g), m.p. 291° (d), undepressed by admixture with the naturally occurring compound. The two samples had identical UV, IR and NMR spectra and identical TLC behaviour.

The MeOH filtrate was concentrated *in vacuo* below 40° to 25 ml and passed through a column of Dowex-3 (OH⁻) anion exchange resin (200 g) packed in MeOH. The column was eluted with MeOH to yield methyl 3,4-di(O) methyl D-xyloside (3 g), b.p. 95-100°/2 mm, $[\alpha]_D$ +78.9°. (Found: C, 49.8; H, 8.7. Calc. for C₆H₁₆O₅: C, 50.0; H, 8.4%).

Hydrolysis of the methyl glycoside. The methyl glycoside (3 g) was refluxed for 4 hr with dil H_2SO_4 (1N; 60 ml). The soln was neutralized with BaCO₃ and filtered. The aqueous filtrate was extracted with CHCl₃ and the aqueous soln evaporated to dryness *in vacuo* to yield 3,4-di(O) methyl D-xylose (1.6 g), b.p. 120-125°/0.3 mm, as a syrupy liquid, $[\alpha]_D - 10.2^\circ$ (CHCl₃, c 2.50), $+10.59^\circ$ (H_2O , c 2.6), $+10.4^\circ$ (H_2O , after 48 hr). The sugar was homogenous by paper chromatography and gave positive Tollens and periodic acid tests. (Found: C, 46.9; H, 8.3; OMe, 33.3. Calc. for $C_7H_{14}O_5$: C, 47.2; H, 7.9; 2 OMe, 34.8%).

Bromine oxidation of the sugar. Br₂ (1.1 ml) was added to a soln of the sugar (0.8 g) in water (10 ml) and the soln heated at 50° for 14 hr. Excess Br₂ was removed by bubbling air and the final traces removed by passing SO₂. The soln was extracted with CH₂Cl₂ to yield 3.4-di(O) methyl xylonolactone⁹ (0.3 g), m.p. 67°, undepressed on admixture with an authentic sample of the lactone; $[\alpha]_D = 40.6^\circ$ (H₂O, c 2.1 initial), -25.0° (after 24 hr), -25.0° (after 48 hr), v_{max} 1750 cm⁻¹. (Found: C, 47.9; H, 7.2; OMe, 33.3. Calc. for C₇H₁₂O₅: C, 47.7; H, 6.9; 2 OMe, 35.2%). The two samples had identical IR spectra and TLC behaviour.

Methylation of the lactone. The above lactone (0.1 g) was refluxed for 3 hr with Ag₂O (0.2 g) and MeI (5 ml), more Ag₂O (0.1 g) and MeI (2 ml) being added after every hour. The soln was filtered and the residue washed with ether. The filtrate was evaporated to yield tri (O)methyl xylanolactone (30 mg), m.p. 52° (lit.¹⁰ m.p. 55°). (Found: C, 50.3; H, 7.6. Calc. for C₈H₁₄O₅: C, 50.5; H, 7.4%).

Synthesis of the Keto-Esters

1. Methyl 3,4-dimethoxy-6-(3',4'-methylenedioxybenzoyl) benzoate

(a) N-(3,-Dimethoxyphenethyl) piperonylamide. Piperonoyl chloride (18 g) in benzene (120 ml) was added, with stirring, to a mixture of homoveratrylamine (17 g) and dry calcium oxide (12 g) in benzene (120 ml). The mixture was refluxed for 2 hr, filtered hot and the residue washed with boiling CHCl₃-EtOH (1:1). The filtrate was evaporated, the residue taken up in CHCl₃ and washed with aq Na₂CO₃, water, dil HCl and again with water. The CHCl₃ soln was dried (Na₂SO₄), evaporated and the residue filtered in CHCl₃ through a column of silica to yield the *amide* (28 g), needles (from CH₂Cl₂-ether), m.p. 110-111°. (Found: C, 65·7; H, 6·0; N, 4·5. C₁₈H₁₉NO₅ requires: C, 65·6; H, 5·8; N, 4·3%).

(b) 1-(3',4'-Methylenedioxyphenyl) 6,7-dimethoxy-3,4-dihydroisoquinoline. The above amide (30 g) in toluene (300 ml) was refluxed for 3 hr with POCl₃, cooled and poured into hexane (500 ml). The hexane soln was decanted, the residue basified with ammonia and extracted with CH_2Cl_2 to yield the dihydroisoquinoline (25 g) needles (from CH_2Cl_2 -ether), m.p. 112-113°. (Found: C, 69·8; H, 5·6; N, 4·6. $C_{18}H_{17}NO_4$ requires: C, 69·6; H, 5·5; N, 4·5%). The hydrochloride crystallized from MeOH-ether as yellow needles, m.p. 228° (d). (Found: C, 62·1; H, 5·2; N, 4·1. $C_{18}H_{18}NO_4Cl$ requires: C, 62·2; H, 5·2; N, 4·0%).

(c) 2-Vinyl-4,5-dimethoxy-3',4'-methylenedioxybenzophenone. A soln of the above dihydroisoquinoline (12 g) and Me₂SO₄ (10 g) in toluene (200 ml) was refluxed for 1 hr, cooled and the toluene decanted. The residual solid was washed with ether and used as such. A mixture of the methosulphate (18 g), Me₂SO₄ (20 g), KOH aq (36 g KOH in 125 ml water) and EtOH (60 ml) was refluxed for 2 hr. More Me₂SO₄ (6 g) was added and the refluxing continued for 30 min. The soln was poured into water and extracted with CHCl₁ to yield the *benzophenone* (9 g), needles (from acetone-hexane), m.p. 98° , $v_{max}^{CH_3Cl_2}$ 1650, 1605, 1570 cm⁻¹. (Found: C, 69.0; H. 5.0. C₁₈H₁₆O₅ requires: C, 69.2; H, 5.2%).

(d) Methyl 3.4-Dimethoxy-6-(3'.4'-methylenedioxybenzoyl) benzoate. To a stirred boiling soln of the above benzophenone (3 g) in acetone (150 ml) was added KMnO₄ (6 g) during 30 min. The mixture was refluxed for 1 hr and worked up as in the case of the oxidation of diphyllin to yield, after esterification, the ketoester (1.2 g), needles (from CH_2Cl_2 -hexane), m.p. 175°, identical with the degradation ester. (Found: C, 62.7; H, 4.6, $C_{18}H_{16}O_7$ requires: C, 62.8; H, 4.7%).

2. Methyl 3,4-methylenedioxy-6-(3',4'-dimethoxybenzoyl) benzoate

(a) N-(3,4-Methylenedioxyphenethyl) veratramide. Veratroyl chloride (17 g) in benzene (200 ml) was added to a mixture of homopiperonylamine (15 g) and CaO (9 g) at 75-80°, to yield, after the usual workup, the *amide* (28 g), m.p. 122-123° (from benzene-hexane). (Found: C, 66.0; H, 5.8 C₁₈H₁₉NO₅ requires: C, 65.6; H, 5.8%).

(b) 1-(3'.4'-Dimethoxyphenyl)-6.7-methylenedioxy-3.4-dihydroisoquinoline. The above amide (17 g) in toluene (100 ml) was refluxed for 3 hr with POCl₃ (36 ml) to yield, after work up, the dihydroisoquinoline (13 g), m.p. 160-161° (from EtOH aq). (Found: C. 69.6; H, 5.5. $C_{18}H_{17}NO_4$ requires: C. 69.4; H, 5.5%).

(c) 2-Vinyl-3.4-Methylenedioxy-3',4'-dimethoxybenzophenone. The methosulphate (7 g) of the above dihydroisoquinoline was refluxed for 2 hr with Me₂SO₄ (8 g), EtOH (25 ml) and KOH aq (15 g in 50 ml water) and worked up as usual to yield, after chromatography in benzene over alumina, the *benzophenone* (3.5 g), m.p. 162-163° (from CH₂Cl₂-hexane), v_{max}^{Nu} 1640, 1625, 1590, 1580 cm⁻¹ (Found: C, 69-1; H, 5-1. C₁₈H₁₆O₅ requires: C. 69-2; H, 5-2%).

(d) Methyl 3.4-methylenedioxy-6-(3'.4'-dimethoxybenzoyl) benzoate. The above benzophenone (3.8 g) in acctone (200 ml) was oxidized with KMnO₄ (8 g) and the product esterified with diazomethane to yield the keto-ester (1.9 g), m.p. 180-181° (from CH_2Cl_2 -hexane), v_{Max}^{Max} 1710, 1655 cm⁻¹. (Found: C, 63.2; H, 4.8. $C_{18}H_{16}O_7$ requires: C, 62.8; H, 4.7%). Its m.p. was depressed on admixture with a sample of the degradation ester. The IR and NMR spectra of the two samples were also different.

3. Methyl 3,4-methylenedioxy-6-(3',5'-dimethoxybenzoyl) benzoate

(a) N-(3',4'-Methylenedioxyphenethyl)3,5-dimethoxybenzamide. 3,5-Dimethoxybenzoyl chloride (22 g) was heated with homopiperonylamine (18 g) and CaO (10 g) in benzene (100 ml) to yield the *amide* (30 g), needles (from benzene-hexane), m.p. 118-119°. (Found: C, 65.7; H, 5.7; N, 4.4. C₁₈H₁₉NO₅ requires C, 65.6; H, 5.8; N, 4.3%).

(b) 1-(3'.5'-Dimethoxyphenyl) 6,7-methylenedioxy-3,4-dihydroisoquinoline. A boiling soln of the above amide (4 g) in toluene (120 ml) was treated with P_2O_5 in portions during 1 hr. After refluxing for 5 hr, the toluene was decanted, the residue basified with ammonia and extracted with CHCl₃ to yield the *dihydroisoquinoline* (2 g), m.p. 178° (from CH₂Cl₂-hexane). (Found: C, 69·1; H, 5·7. C₁₈H₁₇NO₄ requires: C, 69·4; H, 5·5%). Cyclization with POCl₃ gave only intractable products. Cyclization with PCl₅ in chloroform gave. in 20% yield. 1-(2.-chloro-3'.5'-dimethoxyphenyl)-6,7-methylenedioxy-3,4-dihydroisoquinoline, m.p. 154-155° (from CH₂Cl₂-hexane). (Found: C, 62·9; H, 4·9; Cl, 10·6. C₁₈H₁₆NO₄Cl requires: C, 62·5; H, 4·7; Cl, 10·3%); NMR: δ 3·79, 3·88 (singlets, 3H each, 2 methoxyls), 5·91 (s, 2H, methylenedioxy), 6·43 (1H) 6·56 (2H) and 6·71 (1H) (4 aromatic protons).

(c) 2-Vinyl-4.5-methylenedioxy-3'.5'-dimethoxybenzophenone. The base (8.5 g) obtained by the P_2O_5 nethod was converted to the methosulphate and refluxed with $Me_2SO_4(12 \text{ g})$, EtOH (40 ml) and KOH aq (20 g KOH in 65 ml water) to yield after chromatography in benzene over alumina, the benzophenone (6 g), m.p. $104-105^{\circ}$ (from CH_2Cl_2 -hexane), v_{max}^{Nu} 1650, 1600 cm⁻¹. (Found: C, 69.5; H, 5.2. $C_{18}H_{16}O_5$ requires: C, 69.2; H, 5.2%).

(d) Methyl 3.4-methylenedioxy-6-13 5'-dimethoxybenzoyl) benzoate. The above benzophenone (2.5 g) in acetone (150 ml) was oxidized with KMnO4 (4.5 g) and the product esterified with diazomethane to yield the keto-ester (0.45 g), m.p. 101° (from CH_2Cl_2 -hexane) v_{max}^{Kar} 1712, 1670 cm⁻¹. (Found: C, 62.8; H, 4.8. $C_{18}H_{16}O_7$ requires: C, 62.8; H, 4.7%). The IR and NMR spectra were different from those of the degradation ester.

Acknowledgement—We thank Dr. Hürzeler, CIBA Limited, Basle, for the mass spectra and Dr. S. Selvavinayakam and his staff for the microanalyses and spectra. We are grateful to Professor J. K. N. Jones, Queen's University, Ontario, for sending us an authentic sample of 3, 4-di(O) methyl xylonolactone. One of us (M. S.) thanks the Council of Scientific & Industrial Research for a senior fellowship.

REFERENCES

- ¹ R. N. Chopra, R. L. Badhwar and S. Ghosh, *Poisonous plants of India*, Vol. II, p. 774. Indian Council of Agricultural Research, New Delhi (1965).
- ² T. Murakami and A. Matsushima, J. Pharm. Soc. Japan 81, 1596 (1961).
- ³ T. R. Govindachari, S. S. Sathe, N. Viswanathan, B. R. Pai and M. Srinivasan, *Tetrahedron Letters* 3517 (1967).
- ⁴ T. R. Govindachari, S. S. Sathe and N. Viswanathan, Ibid. 4183 (1967).
- ⁵ K. Munakata, S. Marumo, K. Ohta and Y. L. Chen, *Ibid.* 4167 (1965).
- ⁶ Z. Horii, K. Ohkawa, S. Kim and T. Momose, Chem. Comm. 653, (1968).
- ⁷ L. A. Duncanson, J. F. Grove and J. Zealley, J. Chem. Soc. 1331 (1953).
- ⁸ K. Munakata. S. Marumo. K. Ohta and Y.-L. Chen. Tetrahedron Letters 3821 (1967).
- ⁴ J. K. Hamilton. D. R. Spriestersback and F. Smith, J. Am. Chem. Soc. 79, 443 (1957).
- ¹⁰ W. N. Haworth and G. C. Westgarth, J. Chem. Soc. 880 (1926).